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Economic application of a second-order differential equation

If the instant price adjustment in a given market is governed by the following model:
D = 300− 2p+ 4p′ − p′′

O = 50 + 3p

p′(t) = 0.2(D −O)

1. Formulate the resulting differential equation from the model and find the general solution.

2. Given the initial conditions p(0) = 12 and p′(0) = 1, find the particular solution and analyze if it is a
dynamically stable equilibrium, justifying your answer.
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Solution

1. Combining the 3 equations:

p′ = 0.2(300− 2p+ 4p′ − p′′ − 50− 3p)

p′ = 0.2(250− p+ 4p′ − p′′)

p′ = 50− 0.2p+ 0.8p′ − 0.2p′′

0.2p′ = 50− 0.2p− 0.2p′′

Dividing everything by 0.2:
p′ = 250− p− p′′

p′′ + p′ + 5p = 250

2. Finding the homogeneous solution:
r2 + r + 5 = 0

The roots are:
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Therefore, the homogeneous solution is:
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Finding the particular solution:
pc = K

p′c = p′′c = 0

0 + 0 + 5K = 250

Thus, K = 50:
pc = 50

The general solution is:
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Taking into account the initial conditions:

[C2] + 50 = 12

From this we get C2 = −38
On the other hand, we need to derive p:
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Evaluating at the point:

p′ = C1
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C2 = 1

p′ = C1
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Solving:

C1 =
−36√
19

The final result is:
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